
EUROGRAPHICS 2024/ P. Charalambous and R. Hu Short Paper

StarDEM: efficient discrete element method for star-shaped particles
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Figure 1: Our StarDEM simulation: bridges forming when particles discharge through a narrow opening, packing and rotating drum.

Abstract
Granular materials composed of particles with complex shapes are challenging to simulate due to the high number of collisions
between the particles. In this context, star shapes are promising: they cover a wide range of geometries from convex to concave
and have interesting geometric properties. We propose an efficient method to simulate a large number of identical star-shaped
particles. Our method relies on an effective approximation of the contacts between particles that can handle complex shapes,
including highly non-convex ones. We demonstrate our method by implementing it in a 2D simulation using the Discrete Element
Method, both on the CPU and GPU.

CCS Concepts
• Computing methodologies → Physical simulation; Collision detection;

1. Introduction

Granular materials, composed of discrete particles like sand or
gravel, are of particular interest in material science as their material
behavior still needs to be fully understood; notably, understanding
how the particles’ shape influences the material behavior remains an
open research problem. Recently, granular materials whose particles
have been fabricated with a specific shape have gained attention,
as they have been shown to offer applications in soft robotics and
architecture [DM16; HOBD21]. In that context, an efficient and ac-
curate simulation method would avoid the need for time-consuming
and expensive experiments with fabricated particles while allowing
researchers to explore the properties of those materials. In order to
capture the behavior caused by specific shapes, simulations must op-
erate at the particle level, dealing with a large number of collisions.
While numerous methods focus on spherical particles, fewer have
studied the simulation of non-spherical ones. Detecting collisions
and handling contacts for non-spherical geometries is typically more
resource-intensive compared to spheres.

This paper aims to propose a simulation method dedicated to
such granular materials composed of identical fabricated particles.

For this, we need not only a fast simulation, as experimenting may
require a large number of simulations, but we also need to be able to
represent a broad range of complex particle geometries–in particular,
the non-convex ones, as shown in Figure 1, often exhibit intriguing
behavior. Many previous works focus on convex or simple shapes
and lack the expressivity to explore more complex shapes. Star
shapes have been shown to be a useful compact representation of an
extensive range of non-convex shapes. They also offer distinctive
geometric properties that can be used to speed up collision handling.
A few works [LCH20; Wan*21; LZZH22] simulate star-shaped
rigid particles. However, their evaluation of the overlap between
two particles, while effective for close-to-spherical particles (usually
representing natural grains or rocks), is not well-suited for strong
concavities or elongated particles. Our StarDEM method focuses on
the stable and efficient simulation of star-shaped particles and can
handle a large variety of non-spherical particles, including highly
non-convex geometries.

Our contributions are the following: (1) We propose to use a
first-order approximation of the distance to efficiently estimate the
distance between a point and the boundary of a star-shape. (2) We
implement an efficient 2D simulation on CPU and GPU dedicated to
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Figure 2: Contact detection: (a) Nodes from S1 between the in-
tersection points of the bounding circles are tested to find the ones
inside S2 (in red). (b) Nodes from S2 corresponding to each contact
are identified (in blue). (c) For each distinct contact, the deepest
node (yellow) is selected as the contact point xxxc. (d) The correspond-
ing overlap depth d and the normal nnn are computed.

this fabricated granular material, particularly materials composed of
highly non-convex particles. We provide open-source code for our
implementation here https://github.com/schreckc/StarDEM.

2. Related work

In Computer Graphics, granular materials are often simulated as a
continuum (e.g., the Material Point Method [DB16]). The material’s
macroscale behavior is homogenized, so there is no need to represent
each grain individually. However, to capture new behaviors induced
by different shapes, it is first necessary to simulate each distinct
particle and handle the collision between them at a small scale.

The Discrete Element Method (DEM) is an efficient way of simu-
lating a large number of particles, each being represented as a distinct
object with a position and orientation. In the original paper from
Cundall et al. [CS79], rigid spheres are simulated using soft colli-
sions: the particles are allowed to overlap slightly. Given two spheres
S1 and S2 of centers ccc1, ccc2 and radii r1, r2, the normal force between
them depends on the depth of the overlap d = r1 + r2 −||ccc1 − ccc2||,
and the contact normal n⃗nn = (ccc1 − ccc2)/∥ccc1 − ccc2∥. The normal force
can then be computed as F⃗FFn = kn d n⃗nn where kn is a stiffness coef-
ficient. Friction forces can also be computed, as well as tangential
forces, which come from the difference of tangential speed between
the two particles at contact point xxxc (the center of the overlap). We
refer the reader to [CS79] for additional details. The force F⃗FF12 of S2
over S1 is then applied at xxxc, and the resulting force and momentum
on the gravity center of S1 are F⃗FF = F⃗FF12 and M⃗MM = F⃗FF12 × (xxxc − ccc1).
The forces are applied similarly on S2 with F⃗FF21 = −F⃗FF12. Finally,
the particles are advected using an explicit integration scheme.

Over the years, many papers have expanded on the original DEM,
and in particular, some extend the method to non-spherical smooth
particles; we refer the reader to [Fen23] for an in-depth recent re-
view. The most prominent method represents the particle shape as a
clump of spheres [BYM05]. This method takes advantage of the ef-
ficiency of treating collisions between spheres. However, accurately
representing smooth, complex shapes requires a high number of
spheres per particle, making the method costly in these cases. Other
methods using implicit functions, such as super ellipsoid and Signed
Distance Fields (SDF), have also been investigated. Among them
are a few works focusing on star-shaped particles whose radial func-
tion is represented by spherical harmonics (or Fourier series in 2D).
Star shapes represent an extensive range of nontrivial non-convex

geometry (see, for example, Figure 1) that can lead to interesting
physical behavior.

A star-shape is defined as a shape containing any segment between
the shape’s center and any boundary point. A 2D star-shape with
a smooth boundary can then be defined using a center ccc and a
differentiable 2π-periodic radial function r(α) associating a radius
to an angle α around the center. Note that for particles that are
not symmetrical around c, the gravity center does not necessarily
coincide with the star-shape’s geometric center ccc. The boundary of
the shape can be implicitly defined as

{ppp| f (ppp) = 0} with f (ppp) = ||ppp− ccc||− r(α(ppp)) (1)

where α(ppp) is the angle formed by (ppp− ccc) and the direction corre-
sponding to α = 0. Thus, a point ppp is inside the shape if f (ppp)< 0
and outside if f (ppp)> 0. The boundary can be sampled by uniformly
sampling the angle α:

{ri}= {r(αi) | αi = i 2π/n for i = 0, . . . ,n−1}. (2)

These properties enable efficient algorithms to detect contacts be-
tween two star shapes [CH21; GB13] by finding the sampled nodes
from one particle inside the other.

Only a few articles tackle the DEM simulation of star-shaped
particles. Closer to us, Wang et al. [Wan*21] consider a contact
detection scheme for 3D star shapes. They propose to compute the
overlap depth using a radial distance, which is a decent approxima-
tion of the Euclidean distance between one point and the boundary
of a star-shape only if the shape is close enough to spherical (see
Figure 3). The work from Lai et al. [LZZH22] models more gen-
eral shapes with SDF, but in the case of spherical harmonics, they
suffer from the same issue as they approximate the SDF by the
radial distance. Finally, Lai et al. [LCH20] propose a closed-form
optimization to find the overlap and intersection points between
the boundaries of two star shapes in 2D. However, their work does
not treat cases where there are several intersections between two
particles, which is often the case with non-convex shapes.

3. Method

First-order approximation distance. To compute the overlap, we
have to evaluate the distance d between a point and the boundary
of a star-shape S defined by a center ccc and the radial function r.
Previous work uses the radial distance along the ray through ppp and
the center: dr = f (ppp). This is a reasonable approximation as long as
the normal of the boundary is close to the direction of the ray from
the center. Unfortunately, this is not the case with an elongated or
highly non-convex particle like the one shown in Figure 3.

We propose to use instead the first-order approximation of the
distance used by Taubin [Tau94] to rasterize an implicit curve. This
approximation uses the first-order Taylor expansion of the implicit
function. In our case, the boundary is defined by the implicit function
f (Equation 1). The distance between a point ppp and the boundary
can be approximated by: d f o =

f (ppp)
||∇ f || with ∇ f being the analytical

gradient of f . This distance is asymptotically equivalent to the Eu-
clidean distance: the error with the Euclidean distance approaches
zero when ppp approaches the boundary. So the error is small when
close to the boundary (Figure 3), which is where the soft collisions
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are computed given that they are supposed only to allow small over-
lap.

This first-order approximation distance between a point and the
boundary of S can thus be computed using only one evaluation of
f and its gradient. The normal of the surface close to the point ppp
can then be approximated by the normalized gradient ∇ f

||∇ f || . The
first-order and radial distances are both evaluated in constant time.
The former is only slightly more costly to evaluate than the latter.
Indeed, it is the radial distance divided by the gradient norm of f ,
which is also used to compute the normal. Even though higher-order
approximations of d are possible [Tau94], we found our simulation
stable by using the first-order only.

Collision detection. We use a collision detection scheme similar
to Wang et al. [Wan*21]. A bounding circle is centered on the
geometric center of the particle. Its radius is the maximal radius of
the particle. If an intersection exists between the bounding circles of
two particles S1 and S2, the region of possible contact is restricted
to the intersection area of the two disks. We denote the intersection
points between the two circles III and JJJ (see Figure 2).

As Wang et al. [Wan*21], we then use a nodes-to-surface scheme
to compute the possible contacts between S1 and S2. We find the
sampled nodes (Equation 2) of S1 that are inside the boundary of S2
using the sign of f . A ray starting from the center of a star-shape only
crosses its boundary once. So we only need to check the boundary
nodes xxx of S1 corresponding to an angle α(xxx) that belongs to the
interval [α(III),α(JJJ)] delimited by the intersection points III and JJJ
(purple region in Figure 2 (a)). Each set of consecutive nodes inside
S2 corresponds to a distinct contact between S1 and S2.

As far as we know, previous works ([LZZH22; Wan*21]) using
nodes-to-surface collision methods only use the nodes from S1 (red
nodes in Figure 2) to resolve the collision. However, this leads
to an asymmetric collision where the forces change if S1 and S2
are reversed. Therefore, we propose also to consider the boundary
nodes from S2. This can be done efficiently using the same geometric
properties as above: the first and last S1’s nodes of a distinct contact
(the red nodes in Figure 2(a) represent two contacts) define an
angular region in S2 (blue region in (b)). We select the nodes from
S2 inside this region (blue nodes). While this is fast on the CPU,
doing this gets costly for the GPU. So, we only consider the red
nodes from S1 for the GPU implementation.

Collision resolution. For each contact between S1 and S2, we
choose as contact point xxxc the deepest node (yellow nodes in Fig-
ure 2 (c)) from one of the particles inside the other. The depth d of
the overlap for this contact is then the distance between xxxc and the
boundary of the other particle. d is computed using the first-order ap-
proximation distance described above. The normal n⃗nn of the contact
is estimated as the gradient of f at point xxxc. The values xxxc, d, and n⃗nn
computed for each contact are then used as described in Section 2.

Note that while most collision methods use one point of contact
for one distinct contact, previous works using nodes-to-surface meth-
ods tend to consider all nodes of S1 inside S2 as contact points and
add forces for each of them. We decided to use the deepest point as
it makes the force depend only on the depth of the overlap and has
no dependency on the number of sampled nodes inside. However,
the relative physical accuracy of the two methods needs further in-
vestigation. In addition, the force and momentum only need to be
computed once per contact with the deepest point method.

Efficient Implementation. We specifically optimize the imple-
mentation of our method for the simulation of granular material
composed of identical particles.

Considering that all particles have the same size, we employ a
spatial grid with cells of size 2rmax. Each particle is assigned a cell
based on its position. For any given particle, we only need to ex-
amine the potential collision with particles within a 3x3 cell square
surrounding the particle position.

The first-order distance, and thus radial function r and its deriva-
tive r′, are frequently evaluated and can be costly to compute, for
example, when using many Fourier coefficients. To circumvent this
issue, we precompute r and r′ in lookup tables. This replacement
of function evaluation with table access simplifies the process and
ensures constant time access. It is important to note that the number
of samples for the lookup table differs from those used in the nodes-
to-surface method. Given that we are sampling a 1D curve and that
we only need to compute and store the tables once, we can afford
high-resolution sampling. We use 20000 samples in our examples,
ensuring precise and accurate results.

The GPU implementation is similar. We build the grid using
atomic operations, creating linked list of particles in each grid entry.
A 2D lookup table – a “sprite” of the particle – is employed to
check whether points of S1 are in S2 and simultaneously retrieve the
collision distance and normal.

4. Results

Figure 3: Distance er-
ror: (top) radial, (bot-
tom) first order.

Our CPU results and timings have been
computed on an AMD Ryzen 9 3900X
12-Core processor. We parallelized the
simulation using OpenMP. Our exam-
ples use particles of radius around 5mm
and weight 0.2g. The normal stiffness is
1e3 Nm−1 and tangent stiffness 0.5e3
Nm−1. The particle’s boundary is sam-
pled with 100 nodes. Our method can
use any differentiable r function. In our
example, we use Fourier sum to rep-
resent r: r(θ) = a0 +∑

N
i=0 ai cos(iθ) +

bi sin(iθ). This can be generalized in 3D
using spherical harmonics. Please refer
to the accompanying video to watch the
simulation results described in the ex-
amples cited in this section.

First-order approximation vs radial distance. We compare the
first-order approximation d f o of the Euclidean distance to a numeri-
cally computed ground truth dgt . The error e = |d f o −dgt |/dgt stays
low close to the boundary (Figure 3, bottom). For example, in the
case of the shape in Figure 3 of radius rmax = 1, the error at a dis-
tance < 0.01 of the boundary stays < 0.17.

The radial distance dr = f (ppp) = ||ppp−ccc||− r(α(ppp)) is only close
to the Euclidean distance where the normal to the boundary is close
to the direction of the ray from the center. Compared to the ground
truth distance, the error can grow very big for elongated regions even
close to the border (Figure 3, top). The error at a distance < 0.01 of
the boundary can reach 2.7. As shown in the video, this may cause
instabilities in the simulation.
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Comparison with a clump of spheres. We implemented Cundall
and Strack’s method for spheres [CS79] and Bell’s method for a
clump of spheres [BYM05]. The implementations are the same
except for the treatment of the collisions. We compare the methods
using packing: 3154 particles fall into a box (Figure 4). Each particle
has an area of 30mm2. We measure the average computation time on
one thread to treat the collisions (detection and computation of the
overlaps). In the case of spheres (a), using StarDEM with r(α) = 1
runs around nine times slower than using direct spheres (9.6ms
vs. 1.1ms for one collision step). However, when using a clump of
spheres to represent a more complex shape, the cost of using spheres
quadratically rises with the number of spheres needed per particle.
For a cross shape, using a star-shape with r(α) = 1+cos(4α) (b), the
computation time is 26ms while using a clump of spheres (c) rises
to 12ms for 9 spheres and 41ms for 17 spheres. More complicated
shapes (e.g. (d), (e)) would require many spheres and an increasing
computation cost for a clump of spheres while the timings for our
simulation stay similar ((d) 30ms, (e) 29ms).

Figure 4: Same amount of particles of equal area and different
shapes, ranging from (a) to (e), after being poured into a box.

Comparison with [LCH20]. We compared 2D timings with the
method from Lai et al. [LCH20]. They report a computation time
of around 5s for 1e4 candidate collisions between pairs of particles,
resulting in an actual collision about half the time. In comparison,
for the last 100 frames of our packing example in Figure 4 (e), we
detect 84.9e4 candidate collisions (bounding circles intersecting),
resulting in 51e4 pairs actually colliding and 84.7e4 distinct contacts.
This is computed in 3s on one thread and 0.6s on 8 threads.

Other results. We demonstrated our method on various examples
with different shapes. We use a time step of ∆t = 0.1ms. The re-
ported times for one simulation step are averaged over the whole
simulation and computed on 8 threads. The particles used for those
times are the ones shown in the pictures–however, the timing is
usually quite similar for different shapes. We show a loose packing
example (Figure 1 (left)) with particles falling in a box (3154 parti-
cles, one simulation step costs in average 8ms). Figure 1 (middle)
shows particles inside a rotating drum (900 particles, 2ms). Particles
discharging through a narrow gap tend to form bridges as shown in
Figure 1 (right) (279 particles, 1ms) –the video also shows the force
network created by this example. The last example in the video
shows a column collapsing and forming a heap (429 particles, 2ms).

GPU. On an NVidia GTX 4080, a full simulation step with 1
million concave particles in contact takes only 7.5ms (see video).

5. Discussion and Conclusion

While we optimized for identical particles in this paper, the core
of our method can also be used for heterogeneous particles. In the
case of a high number of different shapes, the memory cost of using
lookup tables can become prohibitive (even more so for 2D lookup
tables we used for GPU or that would be used in a similar method
using rasterized SDF). This issue will become more acute when
transitioning to 3D star-shaped particles. In these cases, using the ra-
dial function directly instead of LUT would considerably reduce the
memory needed at the cost of being more computationally intensive.
Indeed, the Fourier representation of star shapes is a convenient way
to compactly represent a large range of shapes.

This work’s final goal is to simulate manufactured granular mate-
rials accurately. This will involve meticulously calibrating physical
values to mirror real-world materials and assessing the precision
of our chosen parameters. While we are currently using the sem-
inal DEM version–which is simple to implement–we would like
to demonstrate our method using more advanced models that may
better fit experiments. Notably, using explicit integration imposes a
small time step, which is particularly important here, given that the
force gets inaccurate if the overlap gets too big.

In contrast to earlier approaches focusing on naturally occurring
grains that remain rather close to spherical, our paper uniquely tar-
gets the simulation of a large range of complex star-shaped particles,
notably including highly non-convex particles.
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